Motion of Chips When Leaving the Cutting Zone during Chipboard Plane Milling

Pavel Rudak, Stefan Barcik, Mats Ekevad, Oksana Rudak, Marek Vanco, Jaroslava Stefkova


Mathematical equations were established and the following regularities of the plane milling process of wood materials were analyzed: effect of the cutting edge inclination angle on chip exit angle, influence of cutting edge inclination angle on speed of chip movement along the blade and exit speed of the chips from the cutting zone, dependence of the chip exit angle on the friction coefficients of the chips on the processed material surface and along the blade surface (friction coefficients were determined from the results of experimental measurements), and influence of mill rotation frequency on the chip exit angle. The milling of the chipboards with various mill designs was performed at different cutting parameters (diameter = 7 mm to 32 mm, number of cutting edges = 1 to 4, cutting edge inclination angle = -5° to 20°, frequency of mill rotation = 3000 min-1 to 24000 min-1, feed per tooth = 0.1 mm to 1.5 mm). The process of chip exit from the cutting zone was photographed, and the chip exit angles were measured. A comparison of the chip exit angle values obtained from the experiments with those from the calculations based on the developed mathematical equations showed a high convergence.


Milling; Wood material; Chipboard; Chips; Dust; Chip exit angle; Cutting edge; Inclination angle; Friction coefficient

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126