Structural Characterization and Solid State Properties of Thermal Insulating Cellulose Materials of Different Size Classifications

Mathew Adefusika Adekoya, Sunday Samuel Oluyamo, Olugbenga Oludayo Oluwasina, Adewunmi Isaac Popoola


This study investigated two classifications of wood cellulose of particle sizes 300 µm to 424 µm and 600 µm to 849 µm. The cellulose samples were characterized using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). The cellulose crystal revealed a preferred orientation along the (200) plane for the most prominent peak. The XRD diffractogram revealed an orthorhombic structure obtained from the powder diffractogram file (PDF). Furthermore, the crystallinity index and crystalline size were calculated and the increase in crystalline size of the isolated cellulose indicated higher thermal stability. The EDX analysis showed chemical components of carbon (C), sodium (Na), chlorine (Cl), and oxygen (O) in the isolated cellulose. The morphology of the cellulose appeared as strings of fibres. The isolated cellulose has applications in the production of biomaterial, thermal insulating devices, and domestic applications.


Celtis philippensis; Pulping; Bleaching; Cellulose; Instrumental Analysis

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126