Impact of the Chemical Composition of Pinus radiata Wood on its Physical and Mechanical Properties Following Thermo-Hygromechanical Densification

Noemí Cruz, Cecillia A. Bustos, María Graciela Aguayo, Alain Cloutier, Rosario Castillo

Abstract


The thermo-hygromechanical densification process changes the chemical composition and the physical and mechanical properties of wood. The aim of this work was to study the impact of the chemical composition of Pinus radiata wood on its physical and mechanical properties following the thermo-hygromechanical densification process. The samples were initially segregated by lignin content. Density, hardness, modulus of elasticity (MOE), and modulus of rupture (MOR), in addition to lignin, α-cellulose, hemicellulose, and extractive contents, were determined before and after the densification process. The results indicated that densified wood with high initial lignin content had greater rate of increases in density and MOE than wood with lower initial lignin content. Additionally, densified wood with lower initial lignin content had greater rate of increases in hardness. The rate of increase of MOR did not show significant differences within both groups. Carbohydrates present in the control and the densified wood played an important role in the mechanical strength of the final product.

Keywords


Pinus radiata; Thermo-hygromechanical process; Wood densification; Chemical components

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126