Wood Flour’s Effect on the Properties of Geopolymer-based Composites at Different Curing Times

Hanzhou Ye, Yang Zhang, Zhiming Yu


Fly-ash (FA) /wood-flour (WF) geopolymer composites (FWGCs) were prepared to investigate the influence of WF on the properties of FA-based geopolymer composites at different curing times. The crystallization, surface morphology, geopolymerization, interface analysis, and mechanical properties were characterized. The results indicated that the curing time exerted positive effects on the mechanical strength of the FWGCs. Noticeably distinct microstructures and mechanical properties were observed with different WF contents. The FWGCs with low WF loading (1 wt% and 5 wt%) presented almost unchanged or even improved mechanical properties compared to the pure FA-based geopolymer due to the existence of bonds between the WF and geopolymer matrix in the interface. However, the addition of WF to a higher content (10 wt%, 15 wt%, and 20 wt%) posted a negative influence on mechanical properties with insufficient polymerization of geopolymer and degradation of WF detected by morphology and elemental microanalysis. This study will facilitate a better understanding of the interaction between geopolymers and wooden materials, and serve as a basis for further research and applications.


Fly ash; Geopolymer; Wood flour; Composites; Interface

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126