Velocity Error Correction Based Tomographic Imaging for Stress Wave Nondestructive Evaluation of Wood

Zhan Huan, Zhi Jiao, Guanghui Li, Xi Wu


Stress wave testing has been applied in the nondestructive evaluation of wood for many years. However, the anisotropy property of wood and the limited number of sensors prevent an accurate stress wave velocity measurement and the high resolution of tomographic inversion. This paper proposes a tomographic imaging algorithm (IABLE) with a velocity error correction mechanism. The proposed algorithm computed the wave velocity distribution of the grid cells of wood cross-sections by the least square QR decomposition (LSQR) iterative inversion, and then optimized the tomography with a velocity error correction mechanism (ECM). To evaluate the performance of the proposed algorithm, several healthy and defective logs and live trees were selected as the experimental samples, and the nondestructive testing procedures were finished. With the stress wave velocity data sets measured via a PiCUS 3 stress wave testing instrument, the IABLE algorithm was implemented, and the tomographic images of the log samples and live trees were generated. The experimental results demonstrated the effectiveness of the proposed imaging algorithm for the nondestructive evaluation of wood.


Nondestructive evaluation of Wood; Stress wave; Tomographic imaging; Velocity Error correction

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126