Analysis of Mechanical Properties of Cross-laminated Timber (CLT) with Plywood using Korean Larch

Chul Choi, Erina Kojima, Kyung-Jung Kim, Mariko Yamasaki, Yasutoshi Sasaki, Seog-Goo Kang

Abstract


The bending strength of hybrid wooden-core laminated timber (HWLT), a composite material made from existing cross-laminated timber (CLT) and plywood, was analyzed. Using plywood makes it possible to decrease the bending strength of the starting material. Korea Larch (Larix kaempferi Carr.) was used as plywood because of its popularity in Korea. To analyze HWLT’s bending properties, each component (lamina, plywood) was tested for bending, compression, and tensile strengths. The results showed that the HWLT’s bending strength depended on the plywood’s number of plies. With an increased number of plies, plywood’s bending strength decreased, and also HWLT’s bending strength decreased. Most of the failure showed in-plate shear failure of plywood. This result meant that use of reinforced plywood made it possible to increase HWLT’s bending strength for structural material.

Keywords


Hybrid Wooden-core Laminated Timber (HWLT); Korean Larch; Plywood; Bending strength; Material analysis

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126