Bioelectric Activity of Microbial Fuel Cell during Treatment of Old Corrugated Containerboard Discharges

ShuJie Fan, Mohamed Said Mahmoud, Biao Wen, ZhenHua Su, Yu Zhang


The bioelectric activity of two lab scale microbial fuel cell (MFC) designs, MFCI (1,500 cm3) and MFCII (12,000 cm3) were examined using old corrugated containerboard (OCC) discharge for simultaneous effective treatment with greater power production. The decrease of MFC internal resistance (MFC-Rin) resulted in increased generated power output. The different parameters used in MFC included electrode conducting area (ECA), cathodic redox solution (CRS), MFC volume capacity, and MFCs connections. The generated current densities (CD) and power densities output (PD) at variables of external resistances (Rex) that ranged from 10 Ω to 20,000 Ω were calculated to estimate the MFC-Rin. In MFCI, using potassium ferri-cyanide as CRS, the change of ECA from 16 cm2 to 64 cm2 decreased the MFCI-Rin from 130 Ω to 110 Ω, and it was further decreased to 65 Ω when manganese dioxide was used as the CRS. Using Rex 100 Ω, MFCII exhibited lower Rin 18.46%, enhanced voltage 37.5%, and greater chemical oxygen demand removal 4.77% compared with MFCI. Series and parallel connections between four MFCI increased the generated PD by 286% and 258%, respectively, compared with that obtained by single MFCI.


Microbial fuel cell; Bio-electric energy; Pulp and paper effluent

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126