Molecular Simulation of Reaction Mechanism for Hemicellulose Model Compound during Chlorine Dioxide Bleaching

Shuangquan Yao, Cheng Wang, Cong Gao, Lisheng Shi, Shuangxi Nie, Chengrong Qin


D-xylose, a hemicellulose model compound, was oxidized by chlorine dioxide under simulated bleaching conditions, and the mechanism of this reaction was investigated. The final reaction product, chloroacetic acid, was detected by gas chromatography-mass spectrometer (GC-MS). To study the generating mechanism of chloroacetic acid by D-xylose during chlorine dioxide bleaching, three reaction pathways were designed. The results showed that the biggest heat of reaction, -234.33 kJ/mol, and the minimum reaction activation energy, 44.44 kJ/mol, appeared for one of the candidate pathways (no. 2). That pathway was thermodynamically more favored. Xylitol was generated by D-xylose degradation, and then chloroacetic acid was generated by a series of oxidation, fracture, and substitution reactions on xylitol.


AOX; Hemicellulose model compound; Chlorine dioxide; GC-MS; Oxidation kinetics; Reaction pathway

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126