Recovery of Thermally Compressed Scots Pine (Pinus sylvestris L.) Wood

Lili Li, Jianfang Yu, Yulin Shen, Yuhong An, Ximing Wang

Abstract


Heartwood and sapwood samples of Scots pine were subjected to densification and thermal compression (180 °C to 220 °C) using a hot press, and their recovery behaviors and the involved mechanisms were investigated. Compressed wood (CW) showed poor recovery after water uptake. This deformation effectively was fixed by the subsequent high temperature treatment. To explain the phenomenon, the sorption properties of wood before and after modification by the adsorption isotherms were evaluated. The model of Hailwood and Horrobin gave the changes of the monolayer and multilayer sorption of each group samples and the relationship with wood deformation. By analyzing hygroscopic hysteresis, it was found that the removed elastic components from wood under elevated temperature had an inescapable impact on hysteresis ratio and recovery, even if it was not the only cause. In other words, the modified wood’s plasticity was responsible for its recovery.

Keywords


Compressed wood; Recovery; Mechanism; Adsorption; Elasticity

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126