Improvement to the Solubility and Reactivity of Purified Bamboo Fibers Using a Combined Chemi-mechanical Process

Man Li, Guigan Fang, Zhaosheng Cai, Jing Zhou, Hongyu Fan

Abstract


Bamboo fibers exhibit poor solubility and reactivity because of the aggregational structure of cellulose macro-molecules in fiber cell walls. It has been shown that more free hydroxyl groups on cellulose molecules can be exposed via fibrillation of the fiber walls during a PFI beating process. The changes in fiber characteristics, such as the fibrillation degree, water retention value (WRV), and crystallinity, were analyzed. The results showed that the fiber fibrillation increased from 0.781% to 1.072%, and the WRV increased from 112.8% to 213.6% during the beating process, indicating that a fibrillation effect was present in the bamboo fiber walls that corresponded to an incremental change in the degree of mechanical pretreatment. The saturated solubility value of the treated fibers in an alkali/urea solvent system at low temperature increased from 0.22 wt.% to 2.69 wt.% with an incremental change in the degree of mechanical pretreatment. After high-revolution PFI beating, the cellulose crystallinity index of the samples decreased from 66.4% to 50.0%, but the intrinsic viscosity changed only slightly. The oxidation degree of the cellulose in the treated samples increased from 0.85 mol/AGU to 1.03 mol/AGU, which suggested that the reagent accessibility and chemical reaction performance of the bamboo fibers were both improved.

Keywords


Bamboo fibers; PFI beating; Solubility; Reaction performance

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126