The Effects of Time and Temperature in Hydrothermal Pretreatment on the Enzymatic Efficiency of Wheat Straw

Qian Chen, Kaige Chen, Kun Wang, Jianfeng Ma, Haiyan Yang, Jinghuan Chen


An attempt to correlate biomass characteristics to its susceptibility to enzymes is often inconclusive via investigation of the variables of hydrothermal pretreatment. Based on an integrated analysis of physicochemical properties, cellulose bioconversion, loss of pentose sugars, formation of inhibitory products, and the cost of energy, the optimal hydrothermal operation for wheat straw (1:20 w/v%) was found. This optimal operation involved cooling the hydrolysates as soon as the temperature reached 180 °C. Finally, a total of 40.7% glucose and 70.3% sugars were recovered during subsequent enzymatic hydrolysis. Although treatment at a noticeably increased severity with a long incubation time could lead to almost 100% conversion of cellulose, the weight losses (mainly sugars) and inhibitors in the process liquid were not well suited for an industrial scale operation.


Hydrothermal pretreatment; Enzyme hydrolysis; Variables; Wheat straw

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126