Analysis of the Physical and Chemical Properties of Activated Carbons Based on Hulless Barley Straw and Plain Wheat Straw Obtained by H3PO4 Activation

Bing Wang, Yonggang Li, Hongyu Si, Huiyuan Chen, Ming Zhang, Tao Song

Abstract


High specific surface area activated carbon was prepared by improving the process conditions of phosphoric acid activation and hulless barley straw and plain wheat straw as raw materials. The effects of the activation time on the pore structure and specific surface area of two types of activated carbon were investigated. The results revealed that soaking straws in the high concentrations of H3PO4 for 0.5 h to ensure complete soaking and then removing the straws from H3PO4 solution to activate was beneficial to the infiltration of H3PO4 in the raw material, and there was an increase in the surface area of activated carbon. The largest specific surface area of activated carbon prepared from plain wheat straw and hulless barley straw was 1524 m2/g and 1885 m2/g, respectively. Thermogravimetric analysis and scanning electron microscopy showed that the higher cellulose content, higher hemicellulose content, and smaller fiber morphology in hulless barley straw compared with wheat straw were the main reasons for the more abundant pore structure and higher specific surface area of the activated carbon.

Keywords


Hulless barley straw; H3PO4 activation; Activated carbon; Activation time

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126