Shear Stress and Interlaminar Shear Strength Tests of Cross-laminated Timber Beams

Yao Lu, Wenbo Xie, Zheng Wang, Zizhen Gao

Abstract


The interlaminar shear stresses of the three-layer, five-layer, and seven-layer cross laminated timber (CLT) and those of the oriented laminated beams were calculated according to Hooke's law and the differential relationship between the beam bending moment and shear force. The interlaminar and maximum shear stresses of the CLT beam are related to the number of CLT layers and to the elastic modulus ratio EL/ET (or EL/ER) of the parallel and perpendicular layers. The interlaminar shear strength of the Hemlock CLT was positively correlated with the elastic modulus of its parallel layer. The results showed that the CLT short-span beams had three failure modes when subjected to a three-point bending test, namely perpendicular layer rolling shear failure, CLT interlaminar shear failure, and parallel layer bending failure. The shear stress of the oriented laminated beam followed a parabolic distribution along the height of the section, while the shear stress of the orthogonally laminated beams tended to be balanced, rather than parabolically distributed along the height of section. The short beam three-point bending method was able to effectively test the interlaminar shear strength of CLT due to its stable and readable load.

Keywords


Cross-laminated timber; Interlaminar shear stress; Interlaminar shear strength; Test

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126