Extensible Cellulosic Fibre-polyurethane Composites Prepared via the Papermaking Pathway

Alexey Vishtal, Alexey Khakalo, Elias Antero Retulainen


Formable papers can be used as an alternative to rigid plastics for making 3D shapes for packaging applications. However, commercial use of formable paper is currently limited, due to its poor extensibility. Cellulosic fibres can be combined with polyurethanes to improve the deformability of resulting fibre-polymer composites. This work describes the effect of spray and wet-end addition of polyurethane dispersions to paper to enhance the extensibility and formability of paper. The increase in extensibility was directly proportional to the amount of polyurethane retained in the paper. Absolute improvements in extensibility were as high as 4 to 6 percentage points. Improved extensibility resulted in better formability of paper, which eventually could allow it to compete with plastic packaging in certain applications.


Extensibility; Deformation; Formability; Bonding; Packaging; Fibre; Polyurethane composite

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126