New Method to Evaluate the Frictional Behavior within the Forming Gap during the Deep Drawing Process of Paperboard

Alexander Lenske, Tobias Müller, Marek Hauptmann, Jens-Peter Majschak


To evaluate the influence of different normal forces and contact temperatures on the frictional behavior of paperboard during the deep drawing process, a new measurement punch was developed to measure the normal force, which induced the friction within the gap between the forming cavity and punch. The resulting dynamic coefficient of friction was calculated and reproduced via a new developed substitute test for the friction measurement device, which was first introduced in Lenske et al. (2017). The normal force within the forming gap during the deep drawing process was influenced by the blankholder force profile, the contact temperature, and the fiber direction. The friction measurements with the substitute test showed a strong dependency between the applied normal force and the dynamic coefficient of friction. Furthermore the frictional behavior was influenced by the contact temperature and the wrinkle formation.


Friction behavior; Friction measurement; Paperboard; Tribocharging; Contact electrification; Triboelectrification; Deep drawing process; 3D-forming

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126