Anti-Mildew Properties of Copper Cured Heat-Treated Wood

Guijun Xie, Yongdong Zhou, Yongjian Cao, Lamei Li

Abstract


The dimensional stability and resistance to degradation of wood can be improved using high temperature heat treatment under anaerobic conditions; however, mildew growth can have a deleterious impact on its appearance and commercial value. In this study, wood samples were impregnated in copper-containing solutions at high pressure before being recovered and cured at high temperatures to create treated wood samples with nano copper particles. This copper impregnated wood (up to 6.35% copper content) suppressed the growth of Botryodiplodia theobromae Pat. and Aspergillus niger van Tieghem with 100% efficiency, and Penicillium citrinum Thom with 75% efficiency. However, the growth of Trichoderma viride Pers was not suppressed. These results demonstrate that copper curing can be used to extend the scope, performance, and lifetime of heat-treated wood, enabling it to be used for a new range of applications.

Keywords


Copper-containing compounds; Heat treatment of wood; Anti-mildew; SEM; XRD; XPS; Nano copper particles

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126