Synthesis and Characterization of Dialdehyde Cellulose/ Silver Composites by Microwave-assisted Hydrothermal Method

Bin Wang, Chang Ma, Lian-Hua Fu, Xing-Xiang Ji, Fan-Chen Jing, Shan Liu, Ming-Guo Ma


An easy and environmentally friendly strategy is shown for the synthesis of dialdehyde cellulose/silver nanoparticle composites using dialdehyde cellulose as reducing agent through the microwave-assisted hydrothermal method. The effects of the microwave heating time and temperature on the products were investigated by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), and thermogravimetric analysis (TGA). The dialdehyde cellulose was found to be an efficient reducing agent for silver ions, and the microwave heating time and temperature played a vital role in the morphologies of the silver nanostructures. The influences of different additional reductants such as ascorbic acid and glucose on the shapes, size-distribution, phase, and crystallinity of the samples were comparatively investigated in detail. This strategy is environmentally friendly, surfactant-free, without any other reducing or stabilizing agent chemicals, and the as-prepared dialdehyde cellulose/silver nanoparticles were more convenient to use in biomedical fields.


Dialdehyde cellulose; Ag; Composites; Microwave-assisted hydrothermal; Properties

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126