One-Pot NaOH/Urea Pretreatment and Saccharification of Corn Stover for Fermentable Sugar Production

Qianqian Zhu, Wei Wei, Jianzhong Sun, Qianqian Wang


Conversion of lignocellulose into fermentable sugars and other chemicals usually requires multi-step unit operations, such as pretreatment, filtration/washing, and enzymatic saccharification and fermentation, which are the core steps responsible for increased operating expenses. A low-temperature NaOH/urea solution was shown to be an efficient cellulose solvent for overcoming the recalcitrance of lignocellulose by partially or fully converting rigid cellulose I crystallite into the more easily digestible cellulose II structure and by extracting a majority portion of the lignin and xylan from the lignocellulose. Higher yields of fermentable sugars were produced directly from corn stover in one vessel. This one-pot production of fermentable sugars was achieved via a combination process, including pretreatment with low-temperature NaOH/urea solution, pH adjustment, and enzymatic saccharification in a single reactor. This one-pot process liberated 86.3% of glucose and 71.3% of xylose in 24 h at an enzyme loading of 10 FPU/g and solid loading of 5%. Surfactant addition further enhanced enzymatic saccharification. The combination of low-temperature NaOH/urea pretreatment and enzymatic saccharification into a one-pot process is an efficient method for the conversion of lignocellulose into fermentable sugars suitable for conversion into fuels and other chemicals. Further studies related to lignin recovery and economical evaluation will be conducted.


Corn stover; Low temperature NaOH/urea pretreatment; Enzymatic saccharification

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126