Experimental Investigation on Performance of Short Pineapple Leaf Fiber Reinforced Tapioca Biopolymer Composites

Jamiluddin Jaafar, Januar Parlaungan Siregar, Ahmed Nurye Oumer, Mohammad Hazim Mohd. Hamdan, Cionita Tezara, Mohd. Sapuan Salit


The performance of short pineapple leaf fiber (PALF) reinforced tapioca biopolymer (TBP) composites were investigated, specifically the effect of fiber length and fiber composition on mechanical properties (tensile properties, flexural strength, and impact strength). Composite samples with different fiber lengths (< 0.50 mm, 0.51 mm to 1.00 mm, and 1.01 mm to 2.00 mm) and different fiber compositions (10%, 20%, 30%, and 40%) were prepared through crushing, sieving, internal mixing, compression molding, and machining processes. The combination of PALF and TBP enhanced the mechanical properties of composites with 30% as the optimum fiber content. However, the influence of different fiber lengths up to 2.00 mm provided no significant effect on producing maximum tensile properties. Good interfacial adhesion between PALF and TBP was evident from scanning electron microscopy analysis. Therefore, the combination of PALF and TBP has great potential as a renewable and biodegradable polymer. Moreover, PALF-TBP composites are expected to become alternatives to petroleum-based polymers.


Bio-composites; Natural fiber composites; Pineapple leaf fiber; Starch-based polymer; Tapioca biopolymer

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126