Modeling Butanol Synthesis in Xylose by Clostridium saccharoperbutylacetonicum

Quan Zhou, Huabao Zheng, Wenqiao Yuan


To examine the effect of xylose concentration on butanol synthesis by Clostridium saccharoperbutylacetonicum, a kinetic model of acetone-butanol-ethanol fermentation in the media with various xylose concentrations (40 g/L to 60 g/L) was developed and implemented in COPASI. Batch fermentation experiments were conducted to feed and validate the model, and the highest butanol production was achieved in 45 g/L xylose medium. Strong correlations (R2 > 0.91) between model simulation and experimental results were obtained. The modeling results suggested that the reaction rates in R6 (from acetate to acetyl-CoA), R8 (from acetyl-CoA to acetoacetyl-CoA), R9 (from acetoacetyl-CoA to butyryl-CoA), R10 (from butyryl-CoA to butanol), R14 (from butyrate to butyryl-CoA), and R20 (xylose consumption) were higher in groups with an initial xylose of 45 g/L, 50 g/L, or 55 g/L than those in groups with 40 g/L or 60 g/L xylose. In contrast, the reaction rates in R13 (from butyryl-CoA to butyrate) and R16 (from biomass to inactive cells) were lower in groups with initial xylose of 45 g/L, 50 g/L, or 55 g/L than those in groups with 40 g/L or 60 g/L xylose, which indicated that when initial xylose concentration changed, those reactions were affected, which resulted in different butanol syntheses.


Butanol; Xylose; Kinetic modeling; Copasi; Clostridium saccharoperbutylacetonicum

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126