Consecutive Recovery of Non-Structural Sugars and Xylooligomers from Corn Stover using Hot Water and Acidified Calcium Chloride

Tae Hoon Kim, Tae Hyun Kim

Abstract


Corn stover, which has a high non-structural sugar content, was treated by two-stage fractionation using water and acidified CaCl2 for the consecutive recovery of non-structural sugars and xylooligomers. In this process, water treatment under mild conditions (60 °C to 140 °C) was used for the recovery of non-structural sugars in the first stage, followed by the recovery of xylooligomers using acidified CaCl2 in the second stage under severe conditions (160 °C to 180 °C). For the recovery of non-structural sugars, a water treatment at 80 °C was observed to be effective, recovering 95.6% of the non-structural sugars. With a non-structural sugar-free solid, the reaction conditions for the second stage of treatment using acidified CaCl2 were statistically optimized. The highest recovery yield of xylooligomers (72.5%) was obtained under optimum conditions (172.9 °C, 22.2 min, 4.7% CaCl2). With the two-stage fractionation process, the glucan digestibility of treated solid was enhanced from 34.0% for untreated corn stover to 91.0% for the treated solid (with 15 FPU/g-glucan).

Keywords


Lignocellulosic biomass; Fractionation; Pretreatment; Percolation; Hemicellulose; Biorefinery

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126