Improved Reactivity and Derivatization of Cellulose after Pre-Hydrolysis with Commercial Enzymes

Pia Willberg-Keyriläinen, Jarmo Ropponen, Manu Lahtinen, Jaakko Pere

Abstract


Reactivity is an important parameter when considering the chemical modification or dissolution of cellulose. Different pretreatment methods affect cellulose reactivity by decreasing its degree of polymerization (DP) and crystallinity. In this study, the molar mass of cellulose was decreased via enzymatic pretreatment. Three commercial endoglucanase-rich products were tested. The target was to reduce the viscosity of the pulp to below 200 mL/g and, thus, increase the reactivity of the cellulose. For comparison, cellulose was also pretreated with ozone, and the effects of each pretreatment method on crystallinity and monosaccharide composition of the resulting pulps were investigated. Both enzymatically treated and ozone-treated pulps were esterified using homogeneous and heterogeneous methods, and the degrees of substitution for these treated pulps were much higher than the esters when the untreated pulp was used. Cellulose esters from the pretreated pulps formed films with good mechanical properties by solvent casting.

Keywords


Cellulose; Enzymatic treatment; Ozone treatment; Cellulose esters

Full Text: PDF

Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126