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The present work presented an approximate solution for a compact test 
(CT) specimen that was employed as a standard test provided by ASTM 
E399-19 (2019). The variational method was employed to obtain the 
solution. The method used a two-step strategy to approximate the 
displacement response of the CT specimen. The first step was to obtain 
the general form of displacement solution, and then, the Rayleigh-Ritz 
approach was employed to modify the solution of the first step. A 
compliance equation of the CT specimen was obtained, and furthermore, 
the formula to calculate the stress intensity factor was obtained. The 
solution was validated by finite element (FE) model and the formula 
specified in ASTM E399-19 (2019). It was concluded that the calculation 
results of the proposed solution agreed well with the results of the FE 
model prediction for the ratio of initial crack length-to-ligament length, 
which was in the range of 0.25 to 0.35. Furthermore, compared to the 
results predicted by using the formula addressed in ASTM E399-19 
(2019), the method proposed in the present study can achieve closer 
results than that of the FE model. 
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INTRODUCTION 
 

Virtually all fibrous composites are characterized with anisotropy, and in most 

cases they can be deemed as orthotropic material. The damage or failure of fibrous 

composite containing cracks can be characterized by fibrous interfacial crack propagation. 

To evaluate crack tolerance of orthotropic material, Sith et al. (1965) derived a formula 

providing the relationship of fracture toughness between isotropic and orthotropic 

materials.  Hence the theory of linear elastic fracture mechanics (LEFM) can be adopted to 

evaluated fracture toughness of fibrous composites.   

Linear elastic fracture mechanics (LEFM) introduced the Westergaard stress 

function (Unger 1995) that developed the analytical solutions for near-tip field. The 

singularity in near-tip field was treated by using the stress intensity factor (SIF). For brittle 

material, the SIF was considered as a material property that can be experimentally 

determined. According to the theory of LEFM, the SIF of a plane solid with a through 

thickness crack subjected to opening forces can be given by (Perez 2004) Eq. 1, 
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( )I

P
K f

B W
=                                                                                                              (1) 

where B and W are the specimen width (mm) and ligament length (mm), respectively, P is 

the applied opening force (N), f ()
 
is the function related to the standardized crack length, 

=a/W is the standardized crack length (mm), and a is the crack length (mm). Equation 1 

was obtained based on the Westergaad solution for the infinite plate subjected to the in-

plane opening stress. 

The function f ()
 
serves as a modification that is strongly dependent on the 

geometry of the test specimen. The expressions of the modification for various geometric 

test specimens can be found in many references (Perez 2004; Gdouts 2005; Gross and 

Seelig 2011), and those of standard specimens are provided by ASTM E399-19 (2019). For 

a compact specimen loaded with opening force, the modification function can be given by 

Eq. 2, 
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

+
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−
                                            (2) 

Equation 2 is obtained by data fitting for numerical analyses and is validate only 

for a specific specimen. In fact, the theory of LEFM provides a universal method to 

determine the fracture toughness by differentiating the compliance of test specimen with 

respect to crack length. Therefore, to build the function of compliance with respect to crack 

length is essential to experimentally determine the fracture toughness. However, it is 

difficult to analytically obtain the compliance equation for many test specimens because of 

the complex load and boundary conditions. To date, the compliance equations in many test 

schemes have been obtained by a numerical model.  

In the present work, the variational method was employed to derive the compliance 

equation of the compact test (CT) specimen, and the formula for fracture toughness 

calculation was further obtained by differentiating the compliance in respect to the crack 

length. Difficulties involved in these experiments are discussed, such as specimen size, 

fixture of the specimens into the testing arrangement, and stiffness of the testing equipment. 

 

 

COMPLIANCE EQUATION 
 

Figure 1(a) presents a symmetric CT specimen, with an initial crack length a, 

ligament length W, and width 2h, subjected to a pair of opening tensile load P. According 

to the symmetricity, it is reasonable to take half of the specimen into consideration, and the 

boundary restrictions at the symmetric axis can be assigned to be fully fixed, as illustrated 

in Fig. 1(b).  

In the small displacement theory of elasticity displacement components, u, v, of a 

point of the body are assumed so small that we are justified in linearizing equations 

governing the problem. The linearized governing equations may be summarized as follows: 

Rectangular Cartesian coordinates (x, y) will be employed for defining the two-

dimensional space containing the body, as shown in Fig. 1(b). Thus, the displacement 

components in the x- and y-axis at any point (x, y) in the domain of the half CT specimen 

can be functionally expressed as u(x, y) and v(x, y), respectively. The parameters u(0,y) and 

v(0,y) should satisfy the geometrical boundary condition: 
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( )0, 0u y =  and ( )0, 0v y =                                                                                (3) 

For the sake of simplicity, a two-step approximation technique was employed, i.e., 

the first step was to obtain the general form of the displacement solution; and the second 

step was to determine the modification to reach a more close solution. Because the majority 

of the boundary satisfied the condition v(0,y)=0 and the specimen only was subjected to 

the opening force that was perpendicular to the y-axis, it was reasonable to approximately 

ignore the displacement component v(x, y), and only consider the component in x direction, 

i.e., ( , )u x y . 

For the sake of convenience, the authors divided the specimens into two domains, 

as shown in Fig. 1(b). A representative slice with a thickness of 1 mm was taken for 

analysis. The displacements of the two domains were u1(x,y) and u2(x,y). Then the 

displacements in the two domains will be given by the formulae below, 

 

 

 

 

 

 

 

 

 

 

 

 

                                                    (a)                                               (b) 
 

Fig. 1. Modeling of the CT specimen: (a) the original specimen; (b) the equivalent half specimen 
 

( ) ( )1 1
y

u x,y u x
a

 
= +  
 

                                                                                (4a) 

( ) ( )2 1
y

u x,y u x
W

 
= +  
 

                                                                               (4b) 

where u(x) is a function to be determined. Clearly, Eqs. 4a and 4b satisfy the continuum 

condition ( ) ( )1 2,0 ,0u x u x= . Thus, the strain in the two domains in Fig. 1(b) can be given by 

Eq. 5,  

( )1
1x

y du

a dx


 
= + 
 

， ( )1
0y = ， ( )1 1

xy u
a

 = ；                                                          (5a) 

( )2
1x

y du

W dx


 
= + 
 

， ( )2
0y = ， ( )2 1

xy u
W

 =                                                             (5b) 

where the superscript in the brackets stands for the number of domains. For plane problem, 

the constitutive relationships can be expressed as Eq. 6, 

11 12 11x x y xa a a   = + =                                                                             (6a) 

12 22 12y x y xa a a   = + =                                                                                (6b) 
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33xy xya =                                                                                                   (6c) 

where 
11 /(1 )x xy yxa E  = − , 

12 /(1 )x yx xy yxa E   = − , 
21 /(1 )y xy xy yxa E   = − , 

22 /(1 )y xy yxa E  = − , and 
33 xya G= ; 

iE , 
ijG , and 

ij ( ,i x y= , ,j x y= ) stand for the Young’s modulus, shear modulus, and 

Poisson’s ratio, respectively. The strain energy can be given by Eq. 7: 

( )2 2

11 33
0

1

2

ij

kl kl x xyw d a a


   = = +                                                                           (7) 

Substitute Eqs. 6a, 6b, and 6c into Eq. 7 gives the strain energy for each domain as 

follows: 

2 2

2

1 11 33 2

1 1
1

2

y du
w a a u

a dx a

    
= + +    

     

                                                                     (8) 

2 2

2

2 11 33 2

1 1
1

2

y du
w a a u

W dx W

    
= + +    

     

                                                                      (9) 

According to the principle of energy conservation, one can obtain that, 

Π W U+ =                                                                                                    (10) 

where  is potential energy (J) and U is the strain energy (J) that is given by Eq. 11, 

0

1 2
0 0 0

h a h

l
U w dxdy w dxdy

−
= +                                                                               (11) 

and the work of the external force, W ,  (J) can be calculated by Eq. 12: 

1( , )W Pu h a=                                                                                                (12) 

Substituting Eqs. 8 and 9 into Eq. 11, and then further substituting the results into 

Eq. 10 lead to Eq. 13: 

( )
( )

( )
( )

( )
2

2

33 11 1120

01 1 1 7 7
0 2

2 3 6

h du h dua l d y a l
a u a u dx a u h u Pu h,a

a l dx dx dx

  + + 
 = + − + − −   

    


      

                                                                                                                   
(13)

 
Equation 13 represents the strain energy in the elastic domain 1 and 2 in total that 

was subjected to an opening load at point (h, a). 

According to the variational principle, any possible virtual displacement variation 

for an equilibrium system must satisfy 0 = ; therefore, Eq. 14 is as follows: 

( ) ( )
( )

( )
( ) ( )

2

33 11 112

0

2 07 7
0 2 0

3 6

h

l a du h dua l d u a l
a u u a u dx a u h u u P u h

al dx dx dx
    

 +   + +
− + − − =   

      

                                                                                                                  (14)

    
 

Considering the boundary conditions of elastic domain, we have
( )0

0
du

dx
= , and 

according to Euler’s theory, we may obtain the following equations from Eq. 14: 

( )2

11 332

27
0

3

l aa l d u
a a u

dx al

++
− =                                                                           (15) 
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( )11

7
2

6

a l du
a h P

dx

+
=                                                                                        (16) 

For the sake of simplicity, let 
( )

( )
33

11

6

7

l a a

a l al a


+
= 

+
，thus Eq. 15 can be expressed as: 

2
2

2
0

d u
u

dx
− =                                                                                                 (17) 

The general solution of Eq. 17 can be expressed as: 

1 2

x xu Ae A e −= +                                                                                            (18) 

Substituting the boundary condition yields
1 2A A= at x=h and Eq. 15 into Eq. 18, after 

some obvious simplifications and Eq. 19 is obtained: 

( ) ( )1 2

11

12

7 h h

P
A A

a l a e e  −
= =

+ −
                                                                         (19) 

Thus, the displacement function u has the form of Eq. 20: 

( )
( ) ( )

( )
11

12

7

x x

h h

P
u x e e

a l a e e

 

 

−

−
= +

+ −
                                                        (20) 

Substituting Eq. 20 into Eqs. 4a and 4b gives the displacements of the domain 1 

and 2 as follows: 

( )
( ) ( )

( )1

11

12
1

7

x x

h h

P y
u x,y e e

aa l a e e

 

 

−

−

 
= + + 

+ −  
                                               (21) 

( )
( ) ( )

( )2

11

12
1

7

x x

h h

P y
u x,y e e

la l a e e

 

 

−

−

 
= + + 

+ −  
                                               (22) 

Equations 21 and 22 suppose that the deformation is transverse to crack surface 

linear variate against coordinate y. This hypothesis is quite rough for domain 1, which is 

mainly subjected to bending and shearing deformation. To obtain closer displacement 

solution, we introduce a modification k and further express the displacement as following 

form based on Eqs. 21 and 22, 

( ) ( ) ( )1 coshu x,y P ky x = +                                                                              (23) 

where 
( ) ( )11

12

7 sinha a l h


 
=

+
, the modification k can be obtained by the Rayleigh-Ritz 

method.  

Substituting Eq. 23 into Eq. 12 gives Eq. 24: 

( ) ( ) ( )( ) ( )
22 2 2 2 2 2 2 2

11 33
0

1
1 sinh cosh

2

h a

l
a P ky x a P k x dxdy P u h,a    

−
 = + + −                (24) 

According to the principle of minimum potential energy, the closest approximation 

k must satisfy the condition / 0k  = , therefore Eq. 25 is as follows:  

( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2

11

3 3 2

11 33

1
4 cosh sinh 2

2

2 1 1
sinh 2 2 sinh 2

3 2 2

a h a l a h h

k

a l a h h a a l h h

  


   
 

 
+ − − 

 =
   

+ − + + +   
   

                    (25) 
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It can be concluded from Equations. 23 and 25 that the deformation of the elastic 

body is hyperbolically variated against the coordinate y. The compliance of the CT 

specimen can be calculated by ( ) / ( , )C a P u h a= . Hence, the compliance of the CT specimen 

can be given by Eq. 26: 

( )
( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2

11

3 3 211
11 33

1
4 cosh sinh 2

12cosh 2
1

2 1 17 sinh
sinh 2 2 sinh 2

3 2 2

a h a l a h h
h

C a
a a l h

a l a h h a a l h h

  
 

 
   

 

  
+ − −  

  = +
+     

+ − + + +    
           

 

                                                                                                               (26)   
 

FRACTURE TOUGHNESS 
 

The fracture toughness can be obtained through differentiating of strain energy with 

respect to the crack length (Perez 2004; Gdouts 2005; Gross and Seelig 2011), i.e., 
2

I
2

P C
G

B a


=


, where, B is the thickness (mm) of CT specimen. Substitute Eq. 26 into this 

expression leads to:  

( ) ( ) ( ) ( )I 1 cosh 1 sinh
k

G P ka kP h hP ka h
a a a

 
   

   
= + + − + 

   
                                (27) 

The relationship of SIF and energy release rate can be given by 
I IK E G=  (Gross 

and Seelig 2011). Thus, that the stress intensity can be given by, 

( ) ( ) ( ) ( )
2

I 1 cosh 1 sinh
P k

K P ka kP h hP ka h
BE a a a

 
   

   
= + + − + 

    
                       (28) 

where (Sith et al. 1965): 

11 22 22 12 33

11 11

2

2 2

a a a a a
E

a a

 +
 = +  

 
                                                                         (29) 

( ) ( )

1 1 14

2 7

a l

a l a a l a




  +
= −   + + 

                                                                           (30) 

( )

1 7 1

7 sinha a a l h

 


 

  
= − − −    + 

                                                                   (31) 

For the sake of convenience, we rewrite k  as the following form, 

m n
k

r s

+
=

+
                                                                                                     (32) 

where ( )4 coshm a h= , ( ) ( )2 2 2

11

1
sinh 2

2
n a l a h h 



 
= − − 

 
, ( ) ( )3 3 2

11

2 1
sinh 2

3 2
r a l a h h  



 
= + − 

 
, and 

( ) ( )33

1
2 sinh 2

2
s a a l h h 



 
= + + 

 
; thus, we have,  

( ) ( )
2

1k m n m n r s

a r s a a a as t

   +     
= + − +   

 +       +
                                                           (33) 
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where  

( ) ( ) ( ) ( ) ( )2 2 2 2 3 3 2

11 11

1 2
2 2 sinh 2 cosh 2

2 3

n
a l a l a a h h a l a h

a a a a

  
     

 

     
= − + − − − + +  

     
    

                                                                                                                   (34)       

( ) ( ) ( ) ( ) ( )2 3 3 3 3 3 3 2

11 11

4 2 1 2
2 sinh 2 cosh 2

3 3 2 3

r
a a a l a l h h a l a h

a a a a

  
      

 

     
= + + + + − + +  

           

                                                                                                              
(35)      

 

( ) ( ) ( ) ( )33 33

1 2
2 sinh 2 cosh 2

2

s
a a l h h a a l h

a a a

 
   

 

    
= + + + + +  

    
                     (36) 

 
 
NUMERICAL VALIDATION 
 

To validate the method developed above, numerical analyses were performed 

through the FE Model. Parallel strand bamboo, a bamboo composites manufactured by 

gluing bamboo strands parallel together under controlled temperature and pressure, was 

selected as target material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                          (a)                                                       (b)  

 

Fig. 2. CT specimen: (a) configuration and dimensions of specimen (unit: mm); (b) the principle of 

wedge splitting test 
 

The composite appears as a wood-like material, and the properties of bamboo 

composites are similar to, and usually better than wood products (Huang et al. 2013, 

2015a,b). For this reason, bamboo composites are becoming a prospective alternative of 

wood products in construction engineering (Huang et al. 2016, 2019a; Li et al. 2017; Shen 

et al. 2017; Xiao et al. 2017). It has been found that the cracking or the debonding along 

fiber and resin interfaces is the major effect of structural damage and failure due to inherent 

fine cracks and microvoids in the material (Huang et al. 2018, 2019b). The fracture 

P

a
W

2h

a/W=0.25~0.35

P

L(1)

T (2)

Support

Specimen

F

Wedge Load

transmission

pieces

Needle roller bearing

Starter notch

L(1)

T(2)

P=F/ (2tana)P=F/ (2tana)

2a



  

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Bian et al. (2020). “Solution of compact test specimen,” BioResources 15(3), 7223-7233.  7230 

 

toughness of this material has been tested by Zhou et al. (2018) using a CT specimen as 

shown in Fig. 2.  

The dimensions of the CT samples were determined in accordance with the test 

specimens tested previously by Zhou et al. (2018). As illustrated in Fig. 2(a), it was 

necessary to address in this study that opening load was applied by wedge splitting method. 

It is a modified compact test scheme proposed by Brühwiler and Wittmann (1990). The 

principle of the test methodology is schematically illustrated in Fig. 2(b). The CT specimen 

with a rectangular groove and a starter notch at the bottom of the groove were placed on a 

narrow support fixed on a test machine. The driving force F was transmitted from wedge 

to specimen via a transmission device. Therefore, the external load, P, was decomposed 

into the component, which perpendicular to crack surface to induce Mode-I fracture. 

Ignoring the friction between the wedge and bearings, the crack opening force should be P 

= F / (2 tan ) in case the wedge angle is 2. By comparing the loading and boundary 

conditions of the test specimens, it can be concluded that the displacement response 

perpendicular to crack surface of wedge splitting specimen was the same as that of the 

standard CT specimen specified in ASTM E399-19 (2019). Therefore, the modification 

function, as Eq. 2 illustrates, was validated for the CT specimen of wedge splitting test. 
The energy release rate calculation was preformatted by the J-integral approach, 

and the near-tip contour integrals were implemented using ABAQUS software (Abaqus 

Inc., Abaqus V2018, Palo Alto, CA, USA). In the ABAQUS model (FE model), the CT 

specimen was treated as a plane stress problem and the material was supposed to be an 

orthotropic one. Longitudinal direction of the material, i.e., direction-1, was orientated in 

axis-y of the model; hence, the transverse direction was along axis-x, as shown in Fig. 3.  

 

 
 

Fig. 3. FEM model for J-integral 

 

Material constants were adopted according to Table 1 according to the test results 

(Zhou et al. 2018). Cracks were simulated by pre-specified seams that were supposed to 

have the same lengths and locations as the starter notches of test specimens have. Because 

the seam defined an edge of a face with overlapping nodes that can be separated during 

analyzing process, there was no need to variational the crack faces as they are separated. 

In order to simulate the effect of load transmission piece, crack opening forces were applied 

to the real position where the test load was subjected and the distributed coupling technique 

in ABAQUS was adopted. The technique allowed a concentrated load acted on a reference 

point to produce an equivalent response of a distributed pressure. An eight-node 

biquadratic plane stress element (CPS8R) in the common finite element software 
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ABAQUS was chosen to model the specimens. The contour route enclosing the crack tip 

for J-integral calculation was specified as shown in Fig. 3. Mesh sizes were determined in 

such a way in which the analysis results were minimally sensitive to the element density. 

The vertical component produced by the wedge was omitted due to the small angle of the 

wedge.   

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Fig. 4. The KIC comparison of the FEM, formula, and standard 
 

 

Table 1. The Elastic Parameters of PSB Composite 

 Ex (MPa) Ey (MPa) Gyx (MPa) vyx vxy 

3100 11000 1400 0.3 0.0845 

 

Figure 4 compares the fracture toughness obtained by a different method, where the 

critical loads corresponding to KIC are obtained through tests (Zhou et al. 2018). It can be 

concluded that the calculation results agree well with the results of FE model prediction 

for the ratio of initial crack length-to-ligament length in the range of 0.25 to 0.35. 

Furthermore, the method proposed in the present study can achieve closer results than that 

of FE model.  

 

 

CONCLUSIONS 
 

1. An approximate solution for mode I fracture of CT specimen was derived by using a 

variational approach. The method used a two-step strategy to approximate the 

displacement response of the CT specimen. The first step was to obtain the form of 

displacement solution by assuming that the displacement linearly variated against the 

distance from crack-tip. Then a modification, k, was adopted to further approximate the 

displacement response. The Rayleigh-Ritz approach was employed to determine the 

modification. 

0.20 0.24 0.28 0.32 0.36
0

20

40

60

80
 FEM

 The presented model

 ASTM-E399 (2019)

K
IC

 (
N

·m
m

-2
/3
)

a/W



  

PEER-REVIEWED ARTICLE  bioresources.com 

 

 

Bian et al. (2020). “Solution of compact test specimen,” BioResources 15(3), 7223-7233.  7232 

 

2. To validate the solution, the critical SIF obtained by the FE model, ASTM E399-19 

(2019), and the solution proposed in the present work were compared. It can be 

concluded that the calculation results of the proposed solution were consistent with the 

results of FE model prediction for the ratio of initial crack length-to-ligament length in 

the range of 0.25 to 0.35. 

3. Furthermore, compared to the results predicted by using the formula addressed in 

ASTM E399-19 (2019), the method proposed in the present study can achieve closer 

results than that of the FE model. 
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