MODIFICATION OF LIGNANS BY TRAMETES HIRSUTA LACCASE

Maija-Liisa Mattinen, Karin Struijs, Tapani Suortti, Ismo Mattila, Kristiina Kruus, Stefan Willför, Tarja Tamminen, Jean-Paul Vincken

Abstract


Oxidative polymerization of two isolated lignans, secoisolariciresinol, and secoisolariciresinol diglucoside, as well as the lignan macromolecule, by a high redox potential Trametes hirsuta laccase was studied with different analytical methods. The reactivity of laccase with the different compounds was studied by an oxygen consumption measurement. The polymerization of laccase-treated lignans was evidenced by size exclusion chromatography, reversed phase - high performance liquid chromatography, and matrix-assisted laser desorption/ionisation - time of flight mass spectrometry. The data showed that the selected substrates could be oxidised by laccase. Secoisolariciresinol and secoisolariciresinol diglucoside were polymerized by laccase to a similar extent. The lignan macromolecule reacted to a lesser extent. Polymerization of the macromolecule proceeded mainly via its secoisolariciresinol diglucoside moieties. Furthermore, it was shown that ferulic acid can be linked to polymerized secoisolariciresinol via decarboxylation by laccase. This investigation showed that lignans can be enzymatically modified by Trametes hirsuta laccase.

Keywords


Lignan; Laccase; Polymerization; SEC; MALDI-TOF MS; FTIR

Full Text:

PDF


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126