Jielong Su, Wade K. J. Mosse, Scot Sharman, Warren Batchelor, Gil Garnier


The tensile strength behavior and recyclability of the paper prepared with the addition of polyamideamine-epichlorohydrin (PAE) were investigated. The dry and wet tensile strengths obtained with different PAE dosage were measured. The highest wet-to-dry strength ratio of 35% was obtained at 10 mg/g; above this addition level wet strength dropped slightly and then remained constant. The repulpability of strengthened paper was correlated directly with wet strength. The effect of electrolyte on tensile strength was also quantified by varying sodium chloride and calcium chloride concentration in the furnish stock. Without PAE, high salt concentrations (100 mM) reduced the tensile strength by 15-20%. At constant PAE addition level of 10 mg/g, low levels of salt addition (of either 10 mM NaCl or 10 mM CaCl2) slightly improved the strength; paper strength decreased at high salts concentrations. The cation valency and concentration in the process water were important variables which affected the efficiency of PAE. These results present the significance of developing sustainable wet strength agents that can be applied in demanding salty conditions while maintaining the product recyclability.


Strength; Repulpability; Polyamideamine-epichlorohydrin (PAE); Recyclability; Paper; Wet-strength

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126