Physical and Mechanical Properties of Hydroxypropyl Methylcellulose–Coated Paper as Affected by Coating Weight and Coating Composition

Khaoula Khwaldia


Hydroxypropyl methylcellulose (HPMC)–coated papers without plasticizer and plasticized with polyols were prepared, and the effects of coating weight, different plasticizers (glycerol (GLY), sorbitol (SOR), and polyethylene glycol (PEG)), and plasticizer contents (20% to 50%) on the physical and mechanical properties of the resulting biopolymer-coated papers were studied. Coating weight was the most important factor affecting mechanical properties. Conversely, increasing coating weight led to a decrease in gloss and to an increase in tensile strength (TS), elongation at break (%E), and tearing resistance of coated papers. The application of unplasticized HPMC coatings (3 g/m2) on paper reduced water vapor permeability (WVP) and water absorption capacity by 25% as compared with uncoated paper. All plasticizers significantly (p < 0.05) increased WVP and Cobb60 values of the films. With the exception of PEG, no effect was found with plasticizers on TS and %E of coated papers compared with those without plasticizer. HPMC-coated papers with PEG as a plasticizer showed significantly lower TS and higher %E and tearing resistance than the other plasticized films (p < 0.05). HPMC coating improved tensile properties and tearing resistance of paper and could be regarded as a reinforcement layer.


Hydroxypropyl methylcellulose; Paper; Biopolymer coating; Plasticizer; Barrier properties; Mechanical properties

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126