Effect of Specimen Configuration and Lamination Construction on the Measurement of the In-plane Shear Modulus of Plywood Obtained by the Asymmetric Four-point Bending Test

Hiroshi Yoshihara, Hiroki Kondo


In this study, the in-plane shear modulus of 3-, 5-, and 7-ply lauan wood (Shorea sp.) was measured by conducting an asymmetric four-point bending (AFPB) test with various specimen depth/length ratios and subsequently performing a flexural vibration (FV) test and finite element analysis (FEA). The results obtained from the experiment and the FEA revealed that the in-plane shear modulus was dependent on the depth/length ratio of the specimen. The dependence of the in-plane shear modulus obtained from the AFPB test was more significant than that obtained from the FV test. Additionally, the in-plane shear modulus values obtained from the AFPB test varied more significantly than those obtained from the FV test. In determining the in-plane shear modulus of plywood, the FV test was therefore superior to the AFPB test.


Asymmetric four-point bending test; Finite element analysis; Flexural vibration test; In-plane shear modulus; Plywood

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126