Analyzing Process Related, In-Plane Mechanical Variation of High Density Fiber Boards (HDF) Across the Feed Direction

Jörn Rathke, Martin Riegler, Martin Weigl, Ulrich Müller, Gerhard Sinn


Mechanical properties of the core layer (in-plane) of high density fiberboards (HDF) were analyzed across the width of the board (i.e. across the feed direction). The tests were performed by means of a newly developed double cantilever I beam (DCIB) testing system, with analysis of internal bond strength and bending strength. The specimens were selected from a large-scale experiment in a central European HDF plant, including a completely different machine setting for each sample set. Homogeneous density and property distributions across the feed direction of the boards were generally assumed. During this trial the question arose as to whether processing leads to unequal mechanical properties across the feed direction. In total, 20 sample sets were tested longitudinally and laterally to the feed direction at eight measurement points, revealing 320 test specimens per testing procedure. In contrast to standard testing procedures, the specific fracture energy and the stress intensity factor revealed significant differences between the centre and the edge across the feed direction. This study revealed variations of mechanical properties across the width of the board using the DCIB approach.


Bending strength; High density fiber board; Internal bond strength; Specific fracture energy; Stress intensity factor; Mechanic variation

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126