Parameters of Strand Alignment Distribution Analysis and Bamboo Strandboard Properties

Ihak Sumardi, Shigehiko Suzuki


Strand length, free-fall distance (FFD), and plate spacing was varied to control the strand alignment distribution of strandboard. To determine the strand angle distribution, photographs of strands were recorded as digital image data, and strand angle analysis was conducted using a modified von Mises distribution function. A part of this measurement was used as a reference for the alignment in the board produced. The results of strand alignment distributions showed that the k value was a function of strand length, FFD, and plate spacing. The k value can be improved by adjusting the plate spacing closer to the strand width, shortening the FFD, and using long strands. The power equation model can describe those relations. The bending properties and linear expansion (LE) were greatly affected by the FFD and the plate spacing. The use of low FFD and narrow plate spacing improved the bending properties. The decreasing bending properties in the parallel direction could be comparable to the increasing ones in the perpendicular direction. The contribution of bamboo strand in the longitudinal direction affected these results.


Strand alignment analysis; Free fall distance; Plate spacing; Strand length; Strandboard

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126