Water-Resistant Material from Recovered Fibers and Acrylic Emulsion Terpolymer

Fushan Chen, Haipeng Wu


Styrene (SM), methyl methacrylate (MMA), and butyl acrylate (BA) were used to synthesize a polyacrylic emulsion by core-shell emulsion polymerization. The solid content of the emulsion reached 40% using reasonable reactive emulsifier contents and feeding modes. Then, the emulsion and a fiber were dispersed, coated, and dried together. Finally, fiber-based water-resistant material was successfully fabricated. The experimental results showed that under the conditions of a monomer mass ratio of 1:1:1 and a mass ratio of polyacrylic emulsion to fiber of 2:1, the Cobb value of the material reached 5.0 g/m2. The tensile strength, elongation, and breaking length were 7.4225 kN/m, 1.0%, and 11.706 km, respectively. Using scanning electron microscopy (SEM) to analyze the surface morphology and internal structure of products, the reasons for the high water resistance of fiber-based material was due to the bonding and filling effects of the polyacrylic emulsion on the fibers. For tightly bound fibers, the porous structures formed in fiber-based boards were reduced. On the other hand, the polyacrylic emulsion filled the gaps between fibers. This filling effect led to a continuous structure, and the water resistance of the material was further enhanced.


Core-shell emulsion polymerization; Polyacrylic emulsion; Water resistance; Porous structure; Cobb value

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126