Isothermal CO2 Gasification Reactivity and Kinetic Models of Biomass Char/Anthracite Char

Hai-Bin Zuo, Peng-Cheng Zhang, Jian-Liang Zhang, Xiao-Tao Bi, Wei-Wei Geng, Guang-Wei Wang


Gasification of four biomass chars and anthracite char were investigated under a CO2 atmosphere using a thermo-gravimetric analyzer. Reactivity differences of chars were considered in terms of pyrolysis temperature, char types, crystallinity, and inherent minerals. The results show that the gasification reactivity of char decreased with the increase of pyrolysis temperature. Char gasification reactivity followed the order of anthracite coal char (AC-char) ˂ pine sawdust char (PS-char) ˂ peanut hull char (PH-char) ˂ wheat straw char (WS-char) ˂ corncob char (CB-char) under the same pyrolysis temperature. Two repesentative gas-solid models, the random pore model (RPM) and the modified random pore model (MRPM), were applied to describe the reactive behaviour of chars. The results indicate RPM performs well to describe gasification rates of chars but cannot predict the phenomenon that there appears to exist a peak conversion for biomass chars at a high conversion rate, where the MRPM performs better.


Anthracite char; Biomass char; Gasification; Kinetic model; RPM; MRPM

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126