Effect of Yield Strength of a Circular Saw Blade on the Multi-spot Pressure Tensioning Process

Bo Li, Zhankuan Zhang, Weiguang Li, Xiaorui Peng


In this study, a numerical model of the tangential tensioning stress distribution of a circular saw blade tensioned by multi-spot pressure was established using theoretical analysis, and the tangential tensioning stress distribution of the circular saw blade calculated by the model was shown to be true and reliable. The effect of yield strength of the circular saw blade on the distribution of tangential tensioning stress was studied using the numerical model. The research achievements showed that a circular saw blade made with high-strength or ultra-high-strength steel yielded a better tensioning effect during the multi-spot pressure tensioning process, which could promote the application of a circular saw blade made by high-strength or ultra-high-strength steel.


Circular saw blade; Multi-spot pressure tensioning; Finite element method; High-strength steel

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126