Enhanced Methane Production from Anaerobic Co-Digestion of Wheat Straw and Herbal-Extraction Process Residues

Yonglan Xi, Zhizhou Chang, Xiaomei Ye, Jing Du, Guangyin Chen, Yueding Xu


The efficient biosynthesis of methane from renewable biomass resources is discussed in this paper. Herbal-extraction process residues (HPR) are an excellent raw material for anaerobic digestion because of their abundant trace elements and fermentation stability. Anaerobic co-digestion of wheat straw with HPR was evaluated at HPR/wheat straw ratios (based on total solids (TS), of wheat straw) of 3%, 5%, and 10% with anaerobic sludge at 35±1 °C during 30-d anaerobic digestion. The best performance was achieved with 5% HPR added to the reactor, with cumulative methane production of 13,130 mL and cumulative methane yield of 260.5 mL/g TSadded, respectively. Cumulative methane production increased by 31.4% compared to the 9995 mL achieved in mono-digestion with wheat straw. Furthermore, higher activities of protease and total dehydrogenase and higher ATP levels were displayed during the co-digestion process. The high methane yield in this study demonstrates the great potential of co-digestion of renewable biomass as a feedstock for the economical production of methane.


Wheat straw; Herbal-extraction process residues; Anaerobic co-digestion; Methane

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126