Effect of Drying Pretreatment on the Acetylation of Nanofibrillated Cellulose

Vesna Zepič, Ida Poljanšek, Primož Oven, Andrijana Sever Škapin, Aleš Hančič


The aim of this study was to evaluate the effect of different morphologies of solvent-exchanged (NFCSE), spray-dried (NFCSD), and freeze-dried (NFCFD) nano-fibrillated cellulose on the susceptibility to surface modification with the acetic anhydride/pyridine system. The degree of substitution (DS), morphology, degree of crystallinity (Icr), hydrophobicity, and thermal stability of acetylated products were examined. Acetylated NFCSD and NFCFD had higher DS than acetylated NFCSE, suggesting that drying pre-treatment increased the susceptibility of NFC for acetylation. The morphology of acetylated NFCFD and NFCSD with higher DS was different from unmodified samples, while that of NFCSE was not affected by acetylation. Microspheres of acetylated NFCSD started to dissolve when the highest DS was reached. As opposed to unmodified NFCFD, the nanofibrillar units of acetylated NFCFD became individualised at lower DS. Acetylated samples had lower Icr than the unmodified samples. A significant increase in the contact angle was observed at higher DS of acetylated NFC samples. Acetylation markedly elevated the thermal stability of the acetylated NFC samples.


Acetylation; Freeze dried; Hydrophobicity; Nanofibrillated cellulose; Properties; Spray dried

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126