The Preparation, Characterization, and Influence of Multiple Electroless Nickel-Phosphorus (Ni-P) Composite Coatings on Poplar Veneer

Yanfei Pan, Xin Wang, Jintian Huang


Nickel-Phosphorus (Ni-P) composite coatings were prepared on a poplar veneer surface via a simple electroless nickel (Ni) approach. The substrate deformation, flatness, crystalline structure, and wear resistance of the Ni-P composite coatings were investigated. The deformation degree of the substrate decreased as the number of deposition steps was increased. The flatness and wear resistance of the composite coatings were enhanced with the increase in the number of depositions. The full width, at half of the maximum values of Ni X-ray diffraction (XRD), of peaks in the composite coatings were broadened and strengthened with an increment of the number of depositions in the coatings. The XRD patterns revealed that the Ni that had been deposited on poplar veneer had a crystallite size structure between 42 and 88 Å. The composite structure was characterized with scanning electron microscopy (SEM) images. The uniformity of the particles in the composite coatings could be improved with the increase in the number of depositions. The wear resistance of ideal coatings with a homogeneous thickness was measured via the rolling wear testing machine (RWTM), and the wear resistance of the coatings was increased by 200% compared with that of coatings obtained via a single deposition.


Poplar veneer surface; Electroless Ni-P; Deposition steps; Wear resistance

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126