Thixotropic Flow Behaviour in Chemical Pulp Fibre Suspensions

Jiulong Sha, Fang Zhang, Hui Zhang


This paper presents results on the thixotropic behaviour of hardwood and softwood pulp fibre suspensions. Three rheological tests including hysteresis-loops, creep tests, and step-wise experiments were used to investigate the thixotropic rheology. Both suspensions exhibited a plateau in their flow curves where a slight change of the applied shear stress led to a dramatic change in the corresponding shear rates. During creep experiments under controlled stress, they evolved either towards a rapid shear (liquid regime) or stoppage (solid regime), depending on the relative values of the imposed stress, leading to a viscosity bifurcation around a critical stress. The transient response of pulp to step changes in shear rate was marked by a characteristic time, which can be used to understand the rate of structural change for pulp suspensions. Moreover, the yielding and thixotropic behaviour of the pulp suspensions were highly dependent on shear history and the time of rest prior to the measurement.


Non-Newtonian fluids; Rheology; Time-dependence; Yielding; Pulp fibre suspensions

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126