Preparation and Characterization of Regenerated Cellulose Microspheres and the Adsorption of Pectinase

Rina Wu, Pengfei Huang, Beihai He


Porous cellulose beads were prepared through a simple, facile, and inexpensive method. The resultant microspheres exhibited good spherical shape with a diameter of 1 to 2 mm. Their morphology, pore structure, and physical properties were characterized by scanning electron microscopy, X-ray diffraction, and nitrogen adsorption. The regenerated cellulose was shown by scanning electron microscopy images to have a three-dimensional porous structure, which led to a BET surface area as large as 108 m2/g. These qualities make the beads potentially useful as adsorbents or carriers. The beads remained in the cellulose I structure. Finally, the cellulose beads were tested for the adsorption of pectinase; adsorption was a favorable spontaneous process. Moreover, adsorption was in agreement with the Langmuir isotherm with a capacity of 7.40 mg/g, signifying that pectinase adsorption was a monolayer sorption. Adsorption followed an intraparticle diffusion kinetic model, indicating that intraparticle diffusion was the rate-controlling mechanism. This information will aid in the potential utilization of regenerated cellulose microspheres as supports for pectinase.


Cellulose; Enzymes; Pectinase; Adsorption; Isotherm; Kinetics

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126