Evaluation of Unstructured Kinetic Models for the Production of Bioethanol from Banana and Pineapple Wastes

Yi Peng Teoh, Zhong Xian Ooi


Bioethanol is a renewable energy source, and its production from agricultural wastes, such as banana and pineapple peels, is an economical approach. Enzymatic hydrolysis experiments were performed using a simultaneous saccharification and co-fermentation (SSCF) method. Banana and pineapple wastes inoculated with Aspergillus terreus and Kluyveromyces marxianus produced the maximum ethanol concentrations of 0.35 g/L and 0.27 g/L, respectively. Furthermore, logistic unstructured and incorporated models described well the growth of microorganism, product formation, and substrate utilization during SSCF system with high R2 and low RMSD.


Banana waste; Pineapple waste; Bioethanol; Simultaneous saccharification and co-fermentation (SSCF); Unstructured models; Kinetic

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126