Aging Resistance Properties of Poplar Plywood Bonded by Soy Protein-Based Adhesive

Xiangling Zeng, Jing Luo, Jihang Hu, Jianzhang Li, Qiang Gao, Li Li


The aging resistance properties of poplar plywood prepared with soy protein-based adhesives were investigated. The shear strength of soybean meal/bisphenol epoxy resin (SM/EP) adhesive increased by 197.5% (surface layer) to 1.19 MPa and 153.5% (core layer) to 1.09 MPa compared to soybean meal (SM) adhesive. Wet-dry cycles of 25 ± 3 °C, 63 ± 2 °C, and 95 ± 2 °C accelerated the aging of poplar plywood with soy protein-based adhesive. After eight 25 ± 3 °C wet-dry cycles, the shear strength of plywood bonded with SM/EP adhesive was reduced to 0.88 MPa (surface layer) and 0.71 MPa (core layer). Furthermore, the shear strength of SM adhesive gradually decreased to 0 (surface and core layer) after six and five 25 ± 3 °C wet-dry cycles. The shear strength of SM/EP adhesives was reduced to 0.96 MPa and 0.79 MPa (surface and core layer) after eight 63 ± 2 °C wet-dry cycles, and 0.53 MPa and 0.27 MPa (surface and core layer) after eight 95 ± 2 °C wet-dry cycles. Vertical density profiles indicated that the decrease of shear strength could be attributed to several factors: The small molecules were dissolved, the molecular chains of the adhesives were hydrolyzed by water, and the interior and thermal stress destroyed the bonding structure.


Aging resistance; Soybean protein-based adhesive; Poplar plywood; Wet-dry cycle; Accelerated aging method

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126