Bending Properties of Cross Laminated Timber (CLT) with a 45° Alternating Layer Configuration

Dietrich Buck, Xiaodong (Alice) Wang, Olle Hagman, Anders Gustafsson


Bending tests were conducted with cross laminated timber (CLT) panels made using an alternating layer arrangement. Boards of Norway spruce were used to manufacture five-layer panels on an industrial CLT production line. In total, 20 samples were tested, consisting of two CLT configurations with 10 samples of each type: transverse layers at 45° and the conventional 90° arrangement. Sample dimensions were 95 mm × 590 mm × 2000 mm. The CLT panels were tested by four point bending in the main load-carrying direction in a flatwise panel layup. The results indicated that bending strength increased by 35% for elements assembled with 45° layers in comparison with 90° layers. Improved mechanical load bearing panel properties could lead to a larger span length with less material.


Mass timber engineering; Massive timber; Crosslam; X-lam; Solid wood panel; Solid timber system; Rolling shear; CLT manufacturing; CLT assembly; Multi-layer; Sustainable construction material

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126