Effects of Two-stage Controlled pH and Temperature vs. One-step Process for Hemicellulase Biosynthesis and Feruloyl Oligosaccharide Fermentation using Aureobasidium pullulans

Xiaohong Yu, Xuemei Zhu, Xinwen Lin, Fengwei Li, Zhenxin Gu


A two-stage, pH- and temperature-controlled wheat bran fermentation method using Aureobasidium pullulans was investigated for feruloyl oligosaccharides (FOs) production and the activities of xylanase, xylosidase, and ferulic acid esterase (FAE). A. pullulans secreted xylanase, xylosidase, and FAE at high levels in the initial pH of 4.0 to 5.0 and a fermentation liquid temperature of 31 °C to 33 °C. FOs production via two-stage fermentation (FOs 2) reached 1123 nmol/L after fermentation for 96 h, by controlling the initial pH at 4.0 and the initial temperature at 33 °C, and then changing the pH to 6.0 and the temperature to 29 °C at the same time at 36 h. This process was 12 h shorter and 219 nmol/L higher than a one-stage fermentation for producing FOs 1. Xylanase, xylosidase, and FAE activities were highly correlated with controlled pH and temperature and FOs biosynthesis rate. Thus, the combination of two-stage controlled pH and temperature could support mass production of FOs.


Aureobasidium pullulans; Feruloyl oligosaccharides; Wheat bran; Two-stage controlled pH and temperature; Hemicellulase

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126