The Properties of Choline Chloride-based Deep Eutectic Solvents and their Performance in the Dissolution of Cellulose

Hongwei Ren, Chunmao Chen, Qinghong Wang, Dishun Zhao, Shaohui Guo


A series of choline chloride-based deep eutectic solvents (ChCl-DESs) were synthesized and characterized, and their performance in the dissolution of cellulose was investigated. The hydrogen-bond donors significantly (β-value) affected the properties of ChCl-DESs, causing differentiated dissolution performances. ChCl- imidazole (Im) showed the highest Hammett acidity function (1.869), hydrogen bond basicity (0.864), and dipolarity/polarizability effect (0.382) among the ChCl-DESs. The ChCl-Im showed the lowest pseudo-activation energy for viscous flow (31.76 kJ mol-1) among the ChCl-DESs. The properties of ChCl-Im caused the highest solubility of cellulose (2.48 wt.%) relative to the other ChCl-DESs. Polyethylene glycol (PEG), as a co-solvent, significantly (β-value) enhanced the accessibility of ChCl-Im to cellulose by breaking the supramolecular structure of cellulose, promoting its dissolution. The decrystallization of ChCl-Im-coupled PEG approximately doubled the dissolving capabilities, and the solubility increased by more than 80% in comparison with only ChCl-Im. The cellulose was directly dissolved by ChCl-Im-coupled PEG, and no other derivatives were produced.


Deep eutectic solvents; Cellulose; Dissolution; Choline chloride; Cosolvent

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126