Synthesis of a Novel Allyl-Functionalized Deep Eutectic Solvent to Promote Dissolution of Cellulose

Hongwei Ren, Chunmao Chen, Shaohui Guo, Dishun Zhao, Qinghong Wang


Deep eutectic solvents (DESs) offer attractive options for the “green” dissolution of cellulose. However, the protic hydroxyl group causes weak dissolving ability of DESs, requiring the substitution of hydroxyl groups in the cation. In this study, a novel allyl-functionalized DES was synthesized and characterized, and its possible effect on improved dissolution of cellulose was investigated. The DES was synthesized by a eutectic mixture of allyl triethyl ammonium chloride ([ATEAm]Cl) and oxalic acid (Oxa) at a molar ratio of 1:1 and a freezing point of 49 °C. The [ATEAm]Cl-Oxa exhibited high polarity (56.40 kcal/mol), dipolarity/polarizability effects (1.10), hydrogen-bond donating acidity (0.41), hydrogen-bond basicity (0.89), and low viscosity (76 cP at 120 °C) owing to the π-π conjugative effect induced by the allyl group. The correlation between temperature and viscosity on the [ATEAm]Cl-Oxa fit the Arrhenius equation well. The [ATEAm]Cl-Oxa showed low pseudo activation energy for viscous flow (44.56 kJ/mol). The improved properties of the [ATEAm]Cl-Oxa noticeably promoted the solubility (6.48 wt.%) of cellulose.


Deep eutectic solvent; Cellulose; Dissolution; Allyl triethyl ammonium chloride

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126