Thermal, Flammability, and Morphological Properties of Nano-composite from Fir Wood Flour and Polypropylene

Behzad Bazyar, Ahmad Samariha


The thermal, flammability, and morphological properties were investigated for a nano-composite made from fir wood flour and polypropylene. Polypropylene (PP), fir wood flour, maleic anhydride polypropylene (MAPP), and nanosilica at 5 different concentrations (0, 2, 4, 6, and 8 phc), were mixed using an extruder, and samples were made using a hand-press. Then, the hardness and the thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), limited oxygen index (LOI), X-ray diffraction (XRD), and scanning electron microscopy (SEM) results were studied. The results showed that increasing the nanosilica content up to 8 phc increased the hardness. Also, when the nanosilica content was increased to 8 phc, the thermal stability increased and more charcoal was retained. Increasing the nanosilica content increased the crystallization. The limited oxygen index increased. Studying the x-ray diffraction spectrum showed that the width and peak intensity decreased with the increased intake of silica nanoparticles. Scanning electron microscopy images showed that an increased concentration of nanosilica meant better connections and a more uniform bond was established between the fibers and the matrix.


Fir wood flour; Nanosilica; Differential scanning calorimetry; Thermogravimetric analysis; Hardness

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126