An Inelastic Model for Analyzing Intermediately Slender Engineered Bamboo/Wood Columns Subjected to Biaxial Bending and Compression

Zirui Huang, Zhongfan Chen, Dongsheng Huang, Ying Hei Chui, Yuling Bian


The engineered bamboo/wood composites (EBWCs) studied in this work included solid wood, wood-based composites, and bamboo-based composites. The basic characteristic of these products is that they have similar stress-strain relationships in the parallel to the grain direction because of their similar microscopic structures. The asymmetric stress-strain relationship in tension and compression presents a great challenge for the inelastic analysis of intermediately slender EBWC columns. In this study, a novel model was developed for the inelastic analysis of biaxially loaded intermediately slender EBWC columns with rectangular cross sections. The model provides a step by step method to evaluate the nonlinear responses and load-carrying capacities of these columns. Experiments on parallel strand bamboo columns loaded with biaxial eccentric loads were conducted to validate the model. Good agreement between the experimental and predicted results was achieved. The innovative elements of the model were the asymmetric properties of EBWCs in tension and compression, and its simplicity, which lends itself to implementation in engineering design calculations. The present work is an extension of a previous study by Huang et al. (2015a), and its objective was to develop an innovative inelastic analysis model evaluating biaxially loaded intermediately slender EBWC columns with rectangular cross sections.


Biaxial bending; Beam-columns; Inelastic analysis; Engineered bamboo; Wood composite

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126