Characterization of Thermoplastic Composites Developed with Wheat Straw and Enzymatic-hydrolysis Lignin

Chunhan Yu, Wentao Zhang, Lemma Dadi Bekele, Xiang’an Lu, Gregory Joseph Duns, Leilei Jin, Qi Jia, Jishuang Chen


Novel thermoplastic composites filled with wheat straw (WS) and enzymatic-hydrolysis lignin (EHL) were developed and characterized. The three-dimensional melt blending system of WS, EHL, and high-density polyethylene (HDPE) was optimized via orthogonal experiments. The mechanical properties and melt index of the composites were measured and the optimum ratio of the composites was determined. Based on the optimum ratio of the composites’ blending system, identified through compounding granulation and extrusion molding process links, pilot products of the composites were produced. The thermal behavior, polar groups, and surface structures of the fibers and developed thermoplastic composites were assessed by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) analysis, respectively. The addition of EHL, an abundant renewable resource, improved the dispersity of the matrix as well as the mechanical and thermal properties of the composites. The results provide a theoretical basis for the application and development of new composites and illustrate a potential industrial application of EHL.


Wheat straw; Enzymatic-hydrolysis lignin; Polyethylene; Composites; Characterization

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126