Determining Optimum Material Mixture Ratio and Hot-pressing Parameters for New Hybrid Fiber-reinforced Composites: Modeling and Optimization by Response Surface Methodology

Wei Song, Minghao Zhu, Wei Lin, Shuangbao Zhang


As a bamboo processing residue, bamboo green (B) was evaluated as an additive to wood fiber (W) for developing composite panels. According to a Box-Behnken design, urea-formaldehyde resin-glued panels were fabricated from blends of B and W, with three preparation variables: B weight percentage in fibrous material (20%, 40%, and 60%), hot-pressing temperature (160 °C, 180 °C, and 200 °C), and hot-pressing duration (60, 120, and 180 s). The panels were tested for water uptake, thickness expansion, bending strength, and bending modulus. The results showed that the physical-mechanical properties of panels satisfied the strictest requirements of GB/T 11718 (2009). Four quadratic models were established to predict the four properties using the three variables. All models were statistically significant, with coefficients of variation below 5% and coefficients of determination beyond 0.96. An analysis of variance revealed that all variables significantly influenced panel properties. Their effect mechanisms were discussed. A response surface analysis demonstrated that, for different properties, the optimum B percentage, hot-pressing temperature, and hot-pressing duration ranged from 35% to 49%, 173 °C to 198 °C, and 111 s to 134 s, respectively. When all four properties were simultaneously optimized, the optimum preparation conditions were 42%, 179 °C, and 119 s, respectively.


Hybrid fiber-reinforced composites; Material mixture ratio; Hot-pressing parameters; Physical-mechanical properties; Response surface methodology

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126