Estimation of Acid-Hydrolyzed Cellulose Fiber Size Distribution with Exponential and Rosin-Rammler (R-R) Laws

Weijiang Duan, Zhong Liu, Pengtao Liu, Lanfeng Hui


A new method was developed to characterize the cellulose fiber (hardwood dissolving pulp) size distribution after 50 wt% sulfuric acid hydrolysis at different hydrolysis temperatures with exponential and Rosin-Rammler (R-R) laws. The results show that the two above laws can be effective to explain the cellulose hydrolysis process. The exponential and the R-R laws were found to be well fitted to the sulfuric acid hydrolyzed cellulose fiber length distribution. The cumulative number distribution from Fiber Tester was shown to fit the exponential distribution well, while the cumulative mass distribution obtained from the acid hydrolysis was found to be suitable to the R-R law via an approximation process. The results from SEM analyses also supported the above conclusions. This approach can be used to characterize the cellulosic fiber properties before a further process of biorefinery, nanocellulose preparation, or other application of lignocellulosic fibers.


Fiber length distribution; Sulfuric acid hydrolysis; Exponential law; Rosin-Rammler law

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126