Relationship Between the Thermal Conductivity and Mechanical Properties of Uludağ Fir and Black Poplar

Cemal Özcan, Mustafa Korkmaz


The relationship between the thermal conductivity and some mechanical properties of Uludağ fir and black poplar specimens were determined based on related standards. It was hypothesized that thermal conductivity can be used as a predictor for wood properties. The hot plate test method was used as a thermal conductivity testing method. The density, compression strength, modulus of rupture, and modulus of elasticity values were also measured. Pearson’s correlation coefficient was determined and both linear and multiple regression analyses were performed to estimate the relationship between the parameters. The correlation between the thermal conductivity and density values was strong, which was consistent with past findings. Also, there was a strong correlation between the thermal conductivity, modulus of rupture, and modulus of elasticity, while the compression strength and thermal conductivity had a moderate correlation. The regression equations and test graphs were also determined and shown. Overall, it can be claimed that the thermal conductivity could be used for predicting the density and mechanical properties of wooden materials.


Thermal conductivity; Mechanical properties; Fir; Poplar; Non-destructive testing

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126