Do Novel Wooden Composites Provide an Environmentally Favorable Alternative for Panel-type Furniture?

Sidan Li, Yuan Yuan, Jinman Wang, Minghui Guo


The environmental performance was assessed for a wardrobe made from hybrid modified ammonium lignosulfonate/wood fiber composites (HWC). The HWC wardrobe system involved four subsystems, namely the raw materials supply, energy consumption, wardrobe manufacturing, and transportation. A comparative life cycle assessment of a wardrobe built from conventional medium-density fiberboard with three primary damage categories was also performed. The results suggested that the HWC composites were a more sustainable material compared with conventional boards. The raw materials supply and energy consumption influenced the three primary damage categories. Climate change on human health, particulate matter formation, fossil depletion, and human toxicity had a dominant contribution to the overall environmental impact. Also, a sensitivity analysis was performed with a focus on using wood waste as a raw material and on the different conditions for the modification of lignosulfonate for manufacturing HWC. The results indicated that the use of wood waste and an appropriate amount of unmodified lignosulfonate as a binder aids in efficient HWC production for wardrobes. These results can help to improve HWC wardrobe technology and in choosing the appropriate wardrobe system.


Wooden furniture; HMAL/WF composites (HWC); Medium-density fiberboard (MDF); Life cycle assessment (LCA); Sustainability

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126